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Abstract

This work treats the degrade of semiconductor lifetime during the pumping process. The criteria of
nonlinear waves propagation that responsible for delivery the energy inside the semiconductor was
determined. For this purpose, the quantum fluid model including the exchange-correlation
potentials, the Bohm potential, and the degenerate pressure is employed. The reductive perturbation
theory is used to reduce the basic set of quantum hydrodynamic fluid equations to Korteweg—de Vries,
modified Korteweg—de Vries, and Gardner equations. When the wave carrier frequency is much
smaller than the frequency of hole plasma, the non-linear rogue wave can exist and it is studied
through the non-linear Schrédinger equation. This study predicts the propagation of different non-
linear waves like a soliton, double layer, and rogue waves depending on the plasma and electron beam
parameters. Thus, a practicable physical solution is introduced to avoid the generation of such
energetic non-linear waves during the pumping process.

1. Introduction

The nanosized semiconductor devices such as quantum dots, quantum wells, and transistors had a great deal of
interest where the free carrier charges of electrons/holes represent the state of plasma [ 1, 2]. Therefore studying
the characteristics of such high-density plasmas (i.e. electrons/holes) is very important. At the absolute zero
temperature, semiconductors are bad conductors but its conductivity increases with increasing the temperature
of the material as more free electrons and holes could be gained [1]. The heat which results from the
recombination process between electrons which located at the conduction band and holes which located at the
valence band could be delivered inside the material depending on the propagation of non-linear waves such as
solitons, double layer (shock-like), and rouge waves. This mechanism leads to a defect in the material because the
material temperature will be raised [3, 4].

Soliton wave is a single pulse that retains its shape as it propagates and the experimental observation of such
wave in semiconductors was documented by many authors, see e.g. [5] and [6]. On the other hand, the double
layer consists of successive layers of net positive and net negative charge that neither propagates nor is subject to
aboundary [7]. During the last few years, rogue waves are considered one of the most serious phenomena in
nature [8]. Itis characterized by a short lifetime and a sudden generation with high energy where the first
observable was in mid-ocean and coasted water as it causes damages in petroleum platforms and nuclear power
plants that constructed on the edge of the ocean [9]. Moreover, the existence of this wave had been observed
experimentally in different fields of physics such as fiber optics [ 10, 11], Bose-Einstein condensates [12], and
plasma physics [13]. An insight of theoretical non-linear theory, the modulational instability could be used to
study the mechanism of rogue waves propagation.

A theoretical study of the rogue wave generation in plasma physics was performed by many authors (see e.g.
[14-16]). Recently, Yahia et al [17] studied the propagation of freak waves in GaN semiconductors. Moreover,
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they clarify the existence range for the rogue wave. Also, El-Bedwehy [18] discussed the generation of a rogue
wave in GaAs semiconductors including factors that can lead to rogue wave generation. In case of nanosized
semiconductors, the quantum fluid model is convenient as the plasma number density is very high and so the de
Broglie wavelength is larger than the mean interparticle distance of plasma component [19]. Although, several
works discussed the quantum effects (i.e. Fermi degenerate pressure, Bohm potential, and exchange-correlation
potentials) in quantum plasma, it still ambiguous and needs further studies. More details about quantum plasma
can be found in [20-28]. In fact, for a system of ultrahigh density and low temperature, the exchange-correlation
effects of electrons/holes should be important [29-31]. In a quantum system, the density-functional theory
(DFT) for the ground states is the general techniques to study the exchange-correlation potentials rather than the
many-electron Schrédinger equation which becomes very complicated [32, 33]. The (DFT) depends on the
electrostatic density at each point in space and has a lot of applications in modern technologies [34]. Moreover,
the time-independent DFT is the popular approach for the excited states, rather than the time-dependent DFT
(TDDFT) approach which has challenging problems, where [35, 36] gives more details about time-independent
DFT and TDDFT approaches. The time-independent DFT potentials used here had been introduced by Brey
etal[37] in solid-state physics which became familiar in plasma physics after introducing the time-independent
DFT potentials into the quantum hydrodynamical (QHD) model by Crouseilles et al [38]. Recently, Choudhury
etal[39] discussed more details about an exchange-correlation potentials in semiconductor plasma. This work
aimed to find a physical solution to the degrades of the semiconductors lifetime that exposure to an electron
beam. Furthermore, to the best of our knowledge, no attempt has been made to investigate the generation of
freak waves during the pumping process using an electron beam. Therefore, to avoid the harms of the
propagation of such non-linear waves, we focus our study on the excitation parameters (i.e. the density, velocity,
and temperature of the electron beam) of the GaAs to lower non-linearity. For that purpose, the quantum fluid
model had been applied where the basic equations were reduced to the K-dV, mK-dV, and Gardner evolution
equations using the reductive perturbation techniques where the propagation of soliton and shock-like waves
had been investigated. Moreover, the Gardner equation was transformed into a non-linear Schrédinger (NLS)
equation. Therefore the instability regions that may be responsible for the heating of semiconductors during the
pumping process could be determined, hence this is a facility to overcome this challenge.

2. The theoretical model

Consider a plasma system consisting of free electrons and holes in a nano bulk size semiconductor where the
holes have the same role as ions in the gaseous plasma. This system is pumped by an electron beam with an initial
velocity uy number density n,,. Moreover, the charge neutrality condition at equilibrium is n,g + 1y = 110,
where 1, and ny, are the equilibrium number densities of electrons and holes respectively. The quantum
hydrodynamic fluid model that including the quantum effects arising through the exchange-correlation
potentials and Bohm potential [40] had been employed. Owing to the high density of the electron-hole plasma,
the Fermi degenerate pressure had been used for the electron-hole momentum equations. This is because at high
density the quantum effects resulting from the Fermi—Dirac statistics are dominant with respect to the quantum
contributions arising from the wave nature of the carrier charges. On the other hand, the thermal pressure had
been considered for the classical electron beam momentum equation. Therefore, the total set of the normalized
quantum fluid model is
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The Poisson’s equation for the latter system of equations (1)—(6) is
0%y
Ox?
where m," and m;" are the effective masses of electrons and holes respectively and 1, (1), 1, (147,), and 1y, (14) are the
density (velocity) of the electrons, holes, and electron beam respectively, €, is the permittivity, and e is the magnitude
of electron charge. The last equations (1)—(7) and variables are normalized to the plasma frequency, Debye length,

and Fermi velocity. Also, n,, 11, and 1, are normalized by the unperturbed number densities #,9, 11,9, and 1, of
electrons, holes, and electron beam respectively. The time is normalized by the inverse of plasma frequency

*\—1/2 e \/2 .
w;el = (60 e ) , while space is normalized by the Fermi Debye radius A\pr, = (M) . The velocity uand

ey %110

= n, + vy, — pny, )

\L/2 _
the potential ¢ are normalized by the Fermi electron speed Vi, = (kfn—TJ) and kBeTF ¢ respectively. Moreover,

M = m)/m," is the electron-to-hole effective mass ratio, v = (119 ,/11,0) and p = (11,9 /1e0) are the unperturbed
electron beam number density and unperturbed hole number density to the unperturbed electron number density
respectively, 3; = § By = /31> *np{? [ (M), H, = (Jiwpe /N2 Ky Tre), Hy = (Jiwpe [N2 Ky Tre) M, pu =
(m)/my),and 0 = (T, / Tr.). The Vi 1 is the exchange-correlation potentials of electrons and holes that are given
by Viee = — (0.985(:2{/?W> 1+ aé‘e,h%/%r/m In(1 + 18.37ag, ;3 /T m)),where ay :;”Z: isthe
effective Bohr radius and € is the dielectric constant. The degenerate pressure [41] of the charge carriers electrons/

holes that used in equations (2) and (4) is given by B, ,, = K, hnes) f ,where K, , = %(7‘(‘ /I3t / m., histhe
Planck constant divided by 27. The classical pressure had been used in equation (6), P, o< 1;. Quite recently,
considerable attention had been paid to the locality of Bohm potential where a prefactor v = (D — 2)/3D should be
added in front of the Bohm potential depending on the system dimensionality D [42]. Therefore, for the 1D system,
the factor —1/3 had been added in front of the fourth terms in equations (2) and (4)

3. Derivation of Evolution equations

The propagation of non-linear acoustic waves can be investigated using the reductive perturbation technique
[43]. As aresult of this method, we introduced the following stretching of space-time variables [44]

E=¢eY2(x — Xt) and T =¥, (8)

where ¢ is a small quantity less than one and A is the phase velocity which can be determined from the
compatibility condition. We expanded the physical parameters in equations (1)—(7) as a power series in € about
their equilibrium values as
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Substituting from equations (8) and (9) into the equations (1)—(6), then the lowest order in ¢ yields
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The constants y; and -y, are given in appendix A.
The first order of Poisson’s equation (7) gives the following compatibility condition
! i My, (1)
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Taking into account the next-order in €, we obtained the following equation
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The constants 7, 5, Vy,.;» and 75, j, are given by Appendix A. Using equations (10) and (11) to solve
equations (12)—(17) for ¢, we obtain the final evolution equation as
0 0 o?
—¢, + ABp,— ¢, + AD— ¢, = 0, (18)

or ¢ og 1

where the coefficients A, D, and the non-linear coefficient B are presented in the appendix A. Equation (18) is the
well known Korteweg—de Vries (KdV) equation, that describes the propagation of the non-linear acoustic waves
during the interaction between the semiconductor charge carriers (electrons/holes) and the electron beam. The
coefficients A, B, and D can provide us with the probability to exist non-linear acoustic waves or not. It is known
thatboth A and D are positive, while the coefficient B may be either positive or negative owing to the change of
the plasma parameters. Our attention is given to the propagation of non-linear acoustic waves in GaAs
semiconductor owing to its importance in modern technology. It is known that the specimen of GaAs is
characterized by high carrier mobility and direct energy gap, thus it admits high photonic quantumyield ina
nano-sized material. As a result of that, it has several applications in high-speed electronics such as solar cells,
laser diodes, and microwave frequency integrated circuits [ 1]. However, the pumping process is considered a
source of the non-linearity of the GaAs medium, as it raises the material temperature which reduces the lifetime
of GaAs. Researches on the pumping process of semiconductors have become popular and take considerable
attention from many authors. Coelho et al [45] discussed the GaAs defects during the pumping process using a
low energy electron beam. Also, Archila et al [46] documented that energy can travel through the lattice as wave
packets, then it delivers energy to produce defects. Recently Tunhuma et al [47] studied an experimental solution
which shows the mechanisms responsible for the damage of GaAs. In the following analyze, we give theoretical
investigation to the defect formation in GaAs during the excitation process using a classical electron beam. Here
are the typical values of GaAs physical parameters 1y = 4.7 x 102 m~3, m) = .067m,,and m;" = .5m,
[21,48]. Figure 1 represented the polarity of the non-linear coefficient B, where the positive and negative values
of Bdepends on the electron beam velocity 1, and temperature ratio 0. Itis clear that the positive region is
dominant for a wide range of beam velocity 1y, and temperature o, where the yellow region refers to the positive
values of B, while the green region refers to the negative values of B. The dashed lines refer to the valuesof B = 0
which mean the non-linear coefficient B vanishes and so the non-linear term of equation (18) disappears.
Therefore, the non-linear behavior of the system cannot be described by the KdV equation. The perturbation of
electrons and holes provides the plasma with different non-linear waves. Moreover, the soliton wave is an
important type that carries energy for a long distance without dissipation, and so it becomes a gate of defects.
Therefore, the pumping process should be controlled in order to minimize such non-linear waves to avoid the
harmful noises. To get the soliton solution for equation (18), we introduce a new transformed coordinate X with
respect to a frame moving with velocity U
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Figure 1. The contour plot of the electron beam stream velocity 1 against the electron beam temperature ratio o for nanosized GaAs
with parameters g = 4.7 x 102 m~3, m = 0.067m,, m;* = 0.5m,. Here, v = 0.002and V, = 0.01.

X=¢— Ur, (19)

into equation (18) and taking into account the boundary conditions ¢ — 0and :—}i — Oat|X| — oo, wehave

0, = ¢, sech? (é), (20)

w1

1
where X is the transformed coordinate with respect to a frame moving with velocity U, w; = (%)2 is the wave

width, and ¢, = % is the solitary pulse amplitude.

We can now proceed analogously to the effect of electron beam parameters on the acoustic soliton profile
and examine how the electron beam changes both the amplitude and width pulse. As can be seen from
figure 2(a), increasing the electron beam streaming velocity leads to increasing the energy of the soliton pulse.
Furthermore, increasing the density of the electron beam leads to increasing the amount of heat gained by the
soliton wave as illustrated in figure 2(b). Therefore, both the electron beam velocity 1o and density vhad a
significant effect on the soliton amplitude and width.

Itis interesting to investigate the propagation of non-linear waves at the critical density, thus we derive the
following evolution equation which describes the non-linear waves at B = 0.

a@l 2 8901 63901
— 4+ AC — 4+ AD
or 71 o€ o8

=0, (21)

where equation (21) is called the modified (K-dV) equation and the non-linear coefficient C = 0 at the critical
values of B. Furthermore, it is convenient to combine equations (18) with (19) in order to have a new general
evolution equation that represents the system in the vicinity of B~ O (¢) and at the critical values of the non-
linear term B to yield

3
90 | apThr
73 g

Equation (22) is called the Gardner equation [49]. More details about the derivation of equations (21) and (22)
are given in appendix B.

Now, it is useful to study the double-layer solution of equation (22) under the condition that the non-linear
coefficient Cis always negative. The double layer (DLs) solution is known as a shock-like solution and it consists
of two positive and negative layers of equal or different plasma density [50]. These charges may lose their energy
to the plasma medium causing an increase in the temperature.

Oy,
i} =0. 22
0 22)

+ (ABy, + AC ¢))
-
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Figure 2. Positive acoustic solitary pulses, (a) variation of electric potential ¢ with electron beam velocity u,, for GaAs with parameters
o = 0.06, uyy = 2.5 (solid curve), upy = 2.7 (dashed curve), and 1o = 2.9 (dotted curve) and (b) the electric potential ¢ against the
electron beam density v for GaAs with parameters 0 = 0.06, 1, = 3.5, = 0.001 (solid curve), v = 0.001 3 (dashed curve), and

v = 0.0018 (dotted curve). Here, the plasma parameters are the same as in figure 1.

Taking into account the traveling-wave transformation (19) and substituting into equation (22) then

integrating the result equation considering the boundary conditions ¢ — 0and Z—; = % — 0at|X| — +oo,
we obtain
oy ’
Tl + v =0, 23
( 8X) () (23)
where V() is a Sagdeev potential and given by the following equation
U, B s C 4
V(p) = —¢? + —¢° + —¢t 24
() I T (24)
The next conditions should be satisfied by Sagdeev potential for the DLs structure
Vip)=0at p =0and ¢ = ¢, (25)
Vie)=0 at p=0 and ¢=g¢,, (26)
V' (p)=0 at ¢ =0 and ¢ = g, (27)
Using the boundary conditions (25) and (26) into equation (24), we get
—AB? —B
U= and =— 28
Taking into account Uand ¢,,,; from equations (28) into (24), we have
C
Vi(p) = —%2(9%1 - 501)2- (29)

12D
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Figure 3. Variation of the shock-like profiles with (a) electron beam stream velocity 1o where v = 0.002 and (b) electron beam
density v where uy, = 3.5. Taking the plasma parameters as the same as in figure 1.

Substituting equations (29) into (22) and after some algebraic manipulations, we get the DLs solution as

Pl -C
= 0 4 tanh| g, —X | | 30
A 2 [ (<,01 24D )] (%0)

For a clear insight to the plasma bulk in case of the interaction between the electron beam and the electron/
hole plasma, we have outlined the profile of the shock-like pulses against the electron beam parameters in
figure 3. According to figure 3(a), it is obvious that the DLs has a relatively small amplitude about 0.00016 when
upo = 3. Further slight increasing in u,, leads to provide the DLs amplitude 4 times where for u,, = 3.5 the
amplitude growing to 0.00042. Reaching the double-layer amplitude to this value by slightly increase in 1,
means that the shock-like wave gain more energy, hence this excess of energy may raise the material temperature
and cause defects in the semiconductors. The double layer profile had the same behavior with respect to
changing the electron beam density. Consider figure 3(b), which plots the double layer potential against the
density of electron beam v, for a very slight increase in the electron beam density leads to a sudden increase in the
shock-like amplitude. It is known that the wave amplitude is the main measurement to the wave energy where
taller waves cause a high potential difference, that accelerate the charged particles to high speed. Therefore, if the
electron beam parameters (i.e streaming velocity u,, and density v) are controlled successfully, then the lifetime
of semiconductors may be increased by avoiding such growing of noises during the pumping process.

4. The Evolution equation of rogue wave

Itis interesting to study the propagation of rogue wave during the excitation process of nano-sized
semiconductor which may be a source of heat that reduces the lifetime of the semiconductor. For that purpose,
we need to derive the NLS equation that provides us with more information about the stability (instability) of the
non-linear wave packet that gives rise to the propagation of the rogue wave. Moreover, the NLS equation can be
derived directly using the derivative expansion method where it is valid for all wavenumbers. On the other hand,
the derivation of the NLS equation from the Gardner equation (22) is valid for small wave number only. Owing
to the electron beam streaming velocity, the direct derivation of the NLS equation using the Krylov-Bogoliubov-
Mitropolsky method [51] is not possible. Therefore, it is convenient to transform the Gardner equation (22) into
the corresponding NLS equation and further details about this procedure can be found in [52, 53]. Now, we
introduce the following wave function ¢ to obtain the NLS equation [54]

7
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w1 = Z e Z 0, X, Texpil(k £ — w 7), (31)

n=1 I=—n
where k is the carrier wave number, w is the wave frequency, and the coordinates X and T are given by

X=¢e(—Vyr) and T=¢’7. (32)

Itis interesting to note that, there are two different time scales where the first one represents the carrier waves
with fast scales &, 7, and phase velocity v,. Furthermore, the second one refers to the envelope wave packet with
slow scales X, T, and group velocity V. In fact, the wave function (&, 7) which given by equation (31) should be
real, thus the condition ¢; , = 80?;1 must be satisfied where the asterisk refers to the complex conjugate. Taking
into account equation (32), the derivation that appearing in equation (22) can be replaced by the following
derivative operators

2—>i—|—ei and iﬂg—f\@i—i—fzi. (33)
1013 o€ 0X or or 0X oT
Substituting from equations (31) and (33) into (22), the following linear dispersion relation can be obtained
from the first harmonic (I = 1) of the first-order approximation (n = 1)

w = —ADK>. (34)
Moreover, the group velocity can be derived from the first harmonic (I = 1) of the second-order
approximation (n = 2)to give

Vg = 3ADK?. (35)

Finally, the NLS equation results from the first harmonic (I = 1) of the third-order approximation (n = 3)
so we have

od 0%
i—+P— +Q |PP®=0. 36
5T e | (36)
where P = 6ADk is the dispersion coefficient, Q = % — kAC is the non-linear coefficientand ® = ¢; ;.
Equation (36) had different mathematical solutions where the most important setting is the rational solution
given by the following equation [55]. The latter type is located on a nonzero background and localized both in
the Xand T directions and the general convenient form to express the NLS equation (36) is

§ P - Gi(X, T) + iTH(X, T) .
X, T)= |=|(- _ ),
(X5 T) Ql( 1/ + FCG 1) ]exp(z ) (37)

where T = PTand E(X, T) has no real zeros where j is the order of the solution. The functions Gi(X, T)and
H;(X, T) are polynomials in the variables X and T'. Actually, the solution (37) of the NLS equation (36) indicated
that an amount of the wave energy is concentrated into a small region due to the non-linear behavior of the
medium.

Itis important to take into account the sign of the ratio P/ Q to know whether the changing of wave
amplitude is modulational stable or not. The positive values of P/Q refer to the wave amplitude is modulational
unstable, while the negative values of P/Q refer to the wave amplitude grows modulational stable. It is surprising
that the modulated wave may give rise to a ponderomotive force that can trap particles causing a local depression
in density called a caviton. Moreover, the non-linear waves trapped in this cavity are resonances at the group
velocity then array an isolated structure called an envelope soliton or rogue wave. The latter is corresponding to
the condition that P/Q > 0while for P/Q < 0we have dark soliton [56]. According to figure 4, the positive
values of P/Q which represented by the yellow region are dominant where the green region refers to the negative
values of P/Q. Therefore the (1,0 — o) plan s a serious tool to predict the propagation of the rogue wave during
the pumping process. Moreover, increasing both the electron beam stream velocity 1,0 and the wavenumber k
leads to an increase in the amplitude of the rogue wave as represented by figures 5(a) and (b). It is clear thata
slight increase of the electron beam velocity and the wave number leads to a sudden increase in the rogue wave
amplitude and width. Also, this indicates that the short wavelength acoustic waves are modulational unstable
and the corresponding solution of the NLS equation gives rise to a bright soliton. From this, we deduce that the
electron beam velocity and the wave number plays an important role in increasing the rogue wave energy where
the wave amplitude represents the wave energy. For more description about the rogue wave profile, we
investigated the effect of Bohm potential on the rogue wave profile. As is clear from figure 6, the absence of the
tunneling effect leads to a decrease in the rogue wave amplitude and makes pulses narrower. We concluded that
the tunneling effect may be a source of heat as the electrons can penetrate the rogue wave trapping center and
then raising the substance resistance by exchanging their energy with the material. Thus the excitation process
should be tuned successfully in the stable zones to avoid the degradation of GaAs lifetime.

8
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Figure 4. The contour plot for the P/Q ratio where the yellow (green) color represents the region of the unstable (stable) waves. The
ratio P/Q depicted against the electron beam velocity o and temperature o with k = 1.
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Figure 5. Variation of the rogue wave profile for GaAs. (a) With electron beam velocity 1,y = 3 (solid curve), g = 3.2 (dashed
curve), and uy, = 3.5 (dotted curve) where v = 0.001, k = 0.01,and o = .06. (b) With carrier wave number k = 0.01 (solid curve),
k = 0.015 (dashed curve), and k = 0.1 (dotted curve) where v = 0.001, 1, = 3,and o = .06.
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Figure 6. The rogue wave profile for GaAs with Bohm potential effect (solid curve) and without this effect (dashed curve). Here,
v = 0.001, uy = 2.45,0 = .06,and k = 0.1.

5. Conclusions

In this paper, we studied the propagation of solitons, shock-like, and rogue non-linear waves in a system
composed of (electron/hole) and pumped by an electron beam. Our model had been applied to GaAs
semiconductor plasma that has a great attention for several applications as it characterized by direct energy gap
and high carrier mobility. The reductive perturbation method is employed to reduce the basic set of the
quantum fluid model to the Korteweg—de Vries (K-dV), modified Korteweg—de Vries (mK-dV), and Gardner
equations, which can be transformed into the NLS equation using the modulational instability technique. The
results showed that both the electron beam parameters and carrier wave number enhances the generation of
several noises that becomes a source of heat and may lead to overheating the GaAs. The analysis of the NLS
equation provides us with unstable regions where the rogue waves may be propagated. Moreover, investigation
of the quantum effects reveals that the tunneling effect had a significant influence on the pulse profile. Therefore,
to increase the lifetime of GaAs one should manage the operation of the electron beam and avoid the perturbed
regions which support the generation of these non-linear noises. Eventually, we will build a comparison between
our theoretical results and the experimental results of [47] using the PIC electrostatic simulation which provides
us with the charge density, current density, and electron temperature. It is convenient also, to investigate other
non-linear waves such as breather, blow-up, and soliton rings waves for different types of semiconductor
plasma.

Appendix A. The constants of equations (10), (13) and (15)and coefficients of
equation (18)

The constants 71, 2, 73, V4> and s and coefficients A, B, and D are given as

—0.985¢%3/n 0.62458
"= p— (—80 )(1 + ),
\/3 Meo

3¢ 1 + 18.37ay,

—0.985Me” 7 \(, N 0.62458
3¢ 1 + 18.37a%,3/mn )

—0.985¢%3/71,9
Yie= | ————|»

72252—(

€

—0.985e%3/110
Ysh=—|—— |

S

>

—0.985e%3/1159 )0.034
Vde = —

€ ap,

>

—0.985e%3/my0 ) 0.034
VYah = —

S ﬂ;h
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B ( 2 n 2AMp 2uv (upg — ) )1
BGr =X (Ba= N Buo — (up — N?)?
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Appendix B. The derivation of modified Korteweg—de Vries (mK-dV) and Gardner
equations

We suggested the following expansion and stretched space-time variables in order to overcome the failure of the
(KdV) equation at the critical value of the non-linear term (B = 0)

oo
U =10+ eV (B1)
i=1
where ¥; = [n,u.nyupnyuy0]" and 99 = [1 0 1 upe 1 0 0]7.
E=¢e(x— At) and 7= ¢, (B2)

Substituting equations (B1) and (B2) into the basic equations (1)—(7) the lowest order in € gives the last
linearized solutions and the compatibility condition while the next-order in ¢, yields

(9/7467§e + 2736 + 6746’)/56 + 3ﬁ1 - 27)\2) (1012 + 2

Nep = S B3
’ 18(7 — W) = N ®2)
o MPGH - 27X 4 9w BM 4 2ymM + 6w Mgl Mg, (B4
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I 32 (o + (upo — N D@} I (B5)
2 2000 — e — VD 30 — (o — N2
o (e = 43 A — 1290950 X — 15310 — IN)? N 3\, (B6)
< 18(’}/1 — )\2)3 "y — )\2,
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" 18(y, — ) S
. 12 (upo — N)Opo + (upo — )\)2)8012 (A — upo) @, (BS)
" 2Gp0 — (0 — ND)? 30 — (g0 — N2
Moreover, the Poisson equation gives
L v L Mp ), ZUf 27X = 30— Oenie — 2se — 6aeTe
M= XN 3o — (o — N’ - X)) 2 9 — )
3P (o + (o — N M2p(=98 — 27X + 9uny3,M + 2vM + 6'74h'75hM)) 2 (B9)
Guo — (1 — N)?? 97 — N '

Itis clear from equation (B9) that, the coefficient of ¢, describes the compatibility condition (11), whereas the
coefficient of 7 is identically Bwhich vanishes here. The next-order in & can be presented by the following
equations

Ne1 Me3 Ues
9 12 Ouss 0 w4 9 yny =0, B10
5 0 0 55(1“"2) 56(“2”1) (B10)
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Therefore, solving the last system of equations with the aid of equations (10) and (B3)—(B8), we obtain a
modified Korteweg—de Vries (mK-dV) equation:

0 ,0 6
o9 1 AC ¢ 1 o LA oy
or 0¢ 85 ¢
On the other hand, we need to investigate the evolution equation of the system in the vicinity of the critical
density(i.e B ~ O(¢)). To do that, we employed the Watanabe method (see [49]) and after some straightforward
algebra we get the Gardner equation

&Pl

=0, (B17)
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+(AB<p1+ACgol) L 4 ApZH
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Where Cis the non-linear coefficient and is given as
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